提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
转帖|使用教程|编辑:龚雪|2017-04-01 09:39:14.000|阅读 281 次
概述:Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
弹性分布式数据集(RDD)作为 Spark 最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的 RDD 上执行转换(Transformation)操作产生一个新的 RDD。转换后的 RDD 与原始的 RDD 之间产生的依赖关系,构成了血统(Lineage)。凭借血统,Spark 保证了每一个 RDD 都可以被重新恢复。但 RDD 的所有转换都是惰性的,即只有当一个返回结果给 Driver 的行动(Action)发生时,Spark 才会创建任务读取 RDD,然后真正触发转换的执行。
Task 在启动之初读取一个分区时,会先判断这个分区是否已经被持久化,如果没有则需要检查 Checkpoint 或按照血统重新计算。所以如果一个 RDD 上要执行多次行动,可以在第一次行动中使用 persist 或 cache 方法,在内存或磁盘中持久化或缓存这个 RDD,从而在后面的行动时提升计算速度。事实上,cache 方法是使用默认的 MEMORY_ONLY 的存储级别将 RDD 持久化到内存,故缓存是一种特殊的持久化。 堆内和堆外存储内存的设计,便可以对缓存 RDD 时使用的内存做统一的规划和管 理 (存储内存的其他应用场景,如缓存 broadcast 数据,暂时不在本文的讨论范围之内)。
RDD 的持久化由 Spark 的 Storage 模块 [7] 负责,实现了 RDD 与物理存储的解耦合。Storage 模块负责管理 Spark 在计算过程中产生的数据,将那些在内存或磁盘、在本地或远程存取数据的功能封装了起来。在具体实现时 Driver 端和 Executor 端的 Storage 模块构成了主从式的架构,即 Driver 端的 BlockManager 为 Master,Executor 端的 BlockManager 为 Slave。Storage 模块在逻辑上以 Block 为基本存储单位,RDD 的每个 Partition 经过处理后唯一对应一个 Block(BlockId 的格式为 rdd_RDD-ID_PARTITION-ID )。Master 负责整个 Spark 应用程序的 Block 的元数据信息的管理和维护,而 Slave 需要将 Block 的更新等状态上报到 Master,同时接收 Master 的命令,例如新增或删除一个 RDD。
图 7 . Storage 模块示意图
在对 RDD 持久化时,Spark 规定了 MEMORY_ONLY、MEMORY_AND_DISK 等 7 种不同的 ,而存储级别是以下 5 个变量的组合:
清单 3 . 存储级别
class StorageLevel private( private var _useDisk: Boolean, //磁盘 private var _useMemory: Boolean, //这里其实是指堆内内存 private var _useOffHeap: Boolean, //堆外内存 private var _deserialized: Boolean, //是否为非序列化 private var _replication: Int = 1 //副本个数 )
通过对数据结构的分析,可以看出存储级别从三个维度定义了 RDD 的 Partition(同时也就是 Block)的存储方式:
RDD 在缓存到存储内存之前,Partition 中的数据一般以迭代器()的数据结构来访问,这是 Scala 语言中一种遍历数据集合的方法。通过 Iterator 可以获取分区中每一条序列化或者非序列化的数据项(Record),这些 Record 的对象实例在逻辑上占用了 JVM 堆内内存的 other 部分的空间,同一 Partition 的不同 Record 的空间并不连续。
RDD 在缓存到存储内存之后,Partition 被转换成 Block,Record 在堆内或堆外存储内存中占用一块连续的空间。将Partition由不连续的存储空间转换为连续存储空间的过程,Spark称之为”展开”(Unroll)。Block 有序列化和非序列化两种存储格式,具体以哪种方式取决于该 RDD 的存储级别。非反序列化的 Block 以一种 DeserializedMemoryEntry 的数据结构定义,用一个数组存储所有的 Java 对象,非序列化的 Block 则以 SerializedMemoryEntry 的数据结构定义,用字节缓冲区(ByteBuffer)来存储二进制数据。每个 Executor 的 Storage 模块用一个链式 Map 结构(LinkedHashMap)来管理堆内和堆外存储内存中所有的 Block 对象的实例[6],对这个 LinkedHashMap 新增和删除间接记录了内存的申请和释放。
因为不能保证存储空间可以一次容纳 Iterator 中的所有数据,当前的计算任务在 Unroll 时要向 MemoryManager 申请足够的 Unroll 空间来临时占位,空间不足则 Unroll 失败,空间足够时可以继续进行。对于序列化的 Partition,其所需的 Unroll 空间可以直接累加计算,一次申请。而非序列化的 Partition 则要在遍历 Record 的过程中依次申请,即每读取一条 Record,采样估算其所需的 Unroll 空间并进行申请,空间不足时可以中断,释放已占用的 Unroll 空间。如果最终 Unroll 成功,当前 Partition 所占用的 Unroll 空间被转换为正常的缓存 RDD 的存储空间.
由于同一个 Executor 的所有的计算任务共享有限的存储内存空间,当有新的 Block 需要缓存但是剩余空间不足且无法动态占用时,就要对 LinkedHashMap 中的旧 Block 进行淘汰(Eviction),而被淘汰的 Block 如果其存储级别中同时包含存储到磁盘的要求,则要对其进行落盘(Drop),否则直接删除该 Block。
存储内存的淘汰规则为:
落盘的流程则比较简单,如果其存储级别符合_useDisk 为 true 的条件,再根据其_deserialized 判断是否是非序列化的形式,若是则对其进行序列化,最后将数据存储到磁盘,在 Storage 模块中更新其信息。
Executor 内运行的任务同样共享执行内存,Spark 用一个 HashMap 结构保存了任务到内存耗费的映射。每个任务可占用的执行内存大小的范围为 1/2N ~ 1/N,其中 N 为当前 Executor 内正在运行的任务的个数。每个任务在启动之时,要向 MemoryManager 请求申请最少为 1/2N 的执行内存,如果不能被满足要求则该任务被阻塞,直到有其他任务释放了足够的执行内存,该任务才可以被唤醒。
执行内存主要用来存储任务在执行 Shuffle 时占用的内存,Shuffle 是按照一定规则对 RDD 数据重新分区的过程,我们来看 Shuffle 的 Write 和 Read 两阶段对执行内存的使用:
Shuffle Write
Shuffle Read
在 ExternalSorter 和 Aggregator 中,Spark 会使用一种叫 AppendOnlyMap 的哈希表在堆内执行内存中存储数据,但在 Shuffle 过程中所有数据并不能都保存到该哈希表中,当这个哈希表占用的内存会进行周期性地采样估算,当其大到一定程度,无法再从 MemoryManager 申请到新的执行内存时,Spark 就会将其全部内容存储到磁盘文件中,这个过程被称为溢存(Spill),溢存到磁盘的文件最后会被归并(Merge)。
Shuffle Write 阶段中用到的 Tungsten 是 Databricks 公司提出的对 Spark 优化内存和 CPU 使用的计划[9],解决了一些 JVM 在性能上的限制和弊端。Spark 会根据 Shuffle 的情况来自动选择是否采用 Tungsten 排序。Tungsten 采用的页式内存管理机制建立在 MemoryManager 之上,即 Tungsten 对执行内存的使用进行了一步的抽象,这样在 Shuffle 过程中无需关心数据具体存储在堆内还是堆外。每个内存页用一个 MemoryBlock 来定义,并用 Object obj 和 long offset 这两个变量统一标识一个内存页在系统内存中的地址。堆内的 MemoryBlock 是以 long 型数组的形式分配的内存,其 obj 的值为是这个数组的对象引用,offset 是 long 型数组的在 JVM 中的初始偏移地址,两者配合使用可以定位这个数组在堆内的绝对地址;堆外的 MemoryBlock 是直接申请到的内存块,其 obj 为 null,offset 是这个内存块在系统内存中的 64 位绝对地址。Spark 用 MemoryBlock 巧妙地将堆内和堆外内存页统一抽象封装,并用页表(pageTable)管理每个 Task 申请到的内存页。
Tungsten 页式管理下的所有内存用 64 位的逻辑地址表示,由页号和页内偏移量组成:
有了统一的寻址方式,Spark 可以用 64 位逻辑地址的指针定位到堆内或堆外的内存,整个 Shuffle Write 排序的过程只需要对指针进行排序,并且无需反序列化,整个过程非常高效,对于内存访问效率和 CPU 使用效率带来了明显的提升[10]。
Spark 的存储内存和执行内存有着截然不同的管理方式:对于存储内存来说,Spark 用一个 LinkedHashMap 来集中管理所有的 Block,Block 由需要缓存的 RDD 的 Partition 转化而成;而对于执行内存,Spark 用 AppendOnlyMap 来存储 Shuffle 过程中的数据,在 Tungsten 排序中甚至抽象成为页式内存管理,开辟了全新的 JVM 内存管理机制。
Spark 的内存管理是一套复杂的机制,且 Spark 的版本更新比较快,因此,在理解本文的操作方法的基础之上,还需要结合新版本的功能,才能达到更好的效果。
更多行业资讯,更新鲜的技术动态,尽在。
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@pclwef.cn
本文探讨 SQL Server 中 NULL 和空值之间的区别,并讨论如何有效地处理它们。
Unity 是一款功能极其丰富的游戏引擎,允许开发人员将各种媒体集成到他们的项目中。但是,它缺少最令人兴奋的功能之一 - 将 Web 内容(例如 HTML、CSS 和 JavaScript)直接渲染到 3D 场景中的纹理上的能力。在本文中,我们将介绍如何使用 DotNetBrowser 在 Unity3D 中将 Web 内容渲染为纹理。
DevExpress v24.2帮助文档正式发布上线了,请按版本按需下载~
本教程将向您展示如何用MyEclipse构建一个Web项目,欢迎下载最新版IDE体验!
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@pclwef.cn
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢