提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
翻译|行业资讯|编辑:李显亮|2020-01-14 11:34:44.843|阅读 178 次
概述:Aspose一直致力于研究用于执行文件间格式转换,对文件进行操作(例如创建、版本、操作等)的文件格式API。好消息来啦!专门用于Java平台识别光学标识并管理转换的API控件Aspose.OMR for Java首次公开发行啦!
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
Aspose一直致力于研究用于执行文件间格式转换,对文件进行操作(例如创建、版本、操作等)的文件格式API。好消息来啦!专门用于Java平台识别光学标识并管理转换的API控件Aspose.OMR for Java首次公开发行啦!
Aspose.OMR for Java是一种可从多种图像格式识别光学标记,包括PNG,GIF,JPEG,TIFF,BMP的API。API将输出保存为CSV和JSON格式,并且可以在执行OMR操作时以文本格式显示结果。可点击下方按钮下载最新版体验。
识别扫描的图像和照片
准确率高
处理旋转和透视图像
从TXT文件生成OMR模板
识别来自测试,考试,问卷,调查的数据
将结果保存为CSV和JSON格式
接下来,让我们快速浏览一下上述Java API的功能,以了解如何识别各种图像格式的光学标记,以及如何从包含MCQ的调查,问卷或测试中捕获人类标记的数据。
Aspose.OMR for Java提供了从创建OMR模板到识别光学标记以捕获数据的完整功能集。该API支持通过简单的文本标记生成OMR模板文件或图像。您只需将模板的文本标记传递给API,它将为您生成模板。以下是OMR模板的示例文本标记。
我们可以简单地将文本标记保存在扩展名为.txt的文本文件中。完成后,可以使用以下步骤生成模板:
下面的代码示例演示如何使用Java从文本标记生成OMR模板。
String outputDirectory = "GenerationResult"; String[] GenerationMarkups = new String[] { "Sheet.txt", "Grid.txt", "AsposeTest.txt" }; String[] GenerationMarkupsNoExt = new String[] { "Sheet", "Grid", "AsposeTest" }; OmrEngine engine = new OmrEngine(); for (int i = 0; i < GenerationMarkups.length; i++) { // call template generation providing path to the txt file with markup GenerationResult res = engine.generateTemplate(GenerationMarkups[i]); // check in case of errors if (res.getErrorCode() != 0) { System.out.println("ERROR CODE: " + res.getErrorCode()); } // save generation result: image and .omr template res.save(outputDirectory, GenerationMarkupsNoExt[i]); }
输出结果:
为了在图像中执行OMR,只需要两件事–准备的OMR模板(.omr)和图像(用户填写的表单/工作表)就可以执行OMR。API支持以下图像格式的OMR:
以下是在图像中执行OMR的步骤:
下面的代码示例演示如何使用Java识别图像中的光学标记:
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; // initialize engine and get template processor providing path to the .omr file OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // images loop for (int i = 0; i < UserImages.length; i++) { // path to the image to be recognized String imagePath = UserImages[i]; System.out.println("Processing image: " + imagePath); // recognize image and receive result RecognitionResult result = templateProcessor.recognizeImage(imagePath); // export results as csv string String csvResult = result.getCsv(); String json = result.getJson(); // save csv to the output folder PrintWriter wr = new PrintWriter(new FileOutputStream(UserImagesNoExt[i] + ".csv"), true); wr.println(csvResult); }
可以通过在0到100之间定义一个自定义阈值来微调OMR结果。增大阈值会使API在识别答案时更加严格。可以在TemplateProcessor.recognizeImage()方法中将阈值设置 为第二个参数,如以下Java代码示例所示。
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; int customThreshold = 40; // initialize engine and get template processor providing path to the .omr file OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // images loop for (int i = 0; i < UserImages.length; i++) { // path to the image to be recognized String imagePath = UserImages[i]; System.out.println("Processing image: " + imagePath); // recognize image and receive result RecognitionResult result = templateProcessor.recognizeImage(imagePath, customThreshold); // export results as csv string String csvResult = result.getCsv(); String json = result.getJson(); // save csv to the output folder PrintWriter wr = new PrintWriter(new FileOutputStream(UserImagesNoExt[i] + ".csv"), true); wr.println(csvResult); }
在某些情况下,您可能需要使用不同的阈值重新计算OMR结果。在这种情况下,不必一次又一次地调用TemplateProcessor.recognizeImage(),而是可以使用TemplateProcessor.recalculate()方法配置用于自动重新计算的API,以提高图像处理效率。下面的代码示例演示如何实现OMR结果的重新计算。
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; // init engine and get template processor OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // Set custom threshold to use in recalculation // this value is in range (0 to 100) // represents the percentage of required black pixels on bubble image to be recognized // i.e. the lower the value - the less black pixels required for bubble to be counted as filled and vice versa int CustomThreshold = 40; // images loop for (int i = 0; i < UserImages.length; i++) { String image = UserImages[i]; String imagePath = image; System.out.println("Processing image: " + imagePath); // recognize image RecognitionResult result = templateProcessor.recognizeImage(imagePath); // get export csv string String stringRes = result.getCsv(); // save csv to output folder String outputName = UserImagesNoExt[i] + ".csv"; PrintWriter wr = new PrintWriter(new FileOutputStream(outputName), true); wr.println(stringRes); System.out.println("Export done. Path: " + outputName); // recalculate recognition results with custom threshold templateProcessor.recalculate(result, CustomThreshold); // get export csv string stringRes = result.getCsv(); // save recalculated results outputName = UserImagesNoExt[i] + "_recalculated.csv"; wr = new PrintWriter(new FileOutputStream(outputName), true); wr.println(stringRes); System.out.println("Recalculated result export done. Path: " + outputName); System.out.println(); }
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@pclwef.cn
通过提供强大的3D CAD数据访问工具并适用于桌面、移动和Web的高级环境3D可视化发动机,HOOPS在提升造船设计和制造流程的效率方面发挥了重要作用。
HOOPS Luminate在汽车行业中的应用具有广泛的潜力和深远的影响。它通过提供高效的3D可视化、虚拟装配与拆解、性能分析、客户定制等功能,帮助汽车制造商在设计、生产和销售过程中提升效率、降低成本并提高产品质量。
在不断发展的软件开发世界中,使工具和框架与最新的平台版本保持同步至关重要,欢迎查阅~
全球航运业对国际贸易至关重要,全球 90% 以上的商品通过海运运输。准确监控和控制这些集装箱的移动对于维持高效的供应链至关重要。手动输入集装箱号码是这一程序的关键部分,它带来了相当大的挑战,例如人为错误和效率低下。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@pclwef.cn
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢