彩票走势图

通俗易懂的讲讲数据仓库搭建之路

转帖|大数据新闻|编辑:况鱼杰|2020-11-24 09:58:21.910|阅读 213 次

概述:经过多年来企业信息化建设,大部分都拥有了自己的财务,OA,CRM 等软件。这些系统都有自己的独立数据库,记录着企业运行情况某个方面的数据。但是单独看这些系统的报表,并不一定能对企业运行情况有全面客观的了解。

# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>

相关链接:

经过多年来企业信息化建设,大部分都拥有了自己的财务,OA,CRM 等软件。这些系统都有自己的独立数据库,记录着企业运行情况某个方面的数据。但是单独看这些系统的报表,并不一定能对企业运行情况有全面客观的了解。

对一个企业,不能仅根据出勤率就判断一个人的绩效高低,因为你不知道他的工作成果情况。仅根据财务报表输入支出也体现不了各部门的收益情况,这个部门有多少工作人员,完成了哪些任务你也不知道。正式由于这种需求,产生了OLAP(Online analytical processing )应用,在建立了汇集各系统数据的数据仓库后,OLAP应用可以快速解析多维的查询分析,针对查询出的数据,用户也可以方便的进行钻取,如查询出了年度数据,可以很方便的查看月度数据;查询好地区的数据,可以再看相应城市的数据,还可以显示相应的趋势图,柱状图,饼图等,从而给决策者的判断提供有效的数据支持。



数据抽取

建立OLAP应用之前,要想办法把各个独立系统的数据抽取出来,经过一定的转换和过滤,存放到一个集中的地方,成为数据仓库。这个抽取,转换,加载的过程叫ETL(Extract, Transform,Load).相应的开发工具Oracle有DataStage,微软有SQL Server Integration Services,Pentaho有Kettle。这些ETL工具一般都支持图形化流程建模,文本文件映射导入,XML,XSLT,可执行SQL,javascript等。


数据建模

OLAP应用要根据客户需求,对数据仓库中这些物理存在的表要进行逻辑建模,以某些重要的事实数据(如销售数据)为核心,建立与其他物理表(维度表)之间的业务关系。如销售数据跟部门表,客户表之间的关系。事实和维度之间的组合,就建立了将来做多维查询的基础。建模过程形成的结果在各中平台上的叫法不一样,如BO的叫Universe,Oracle中叫Cube,SqlServer2005的叫统一维度模型UDM,开源Pentaho中也叫Cube。相应的开发工具BO有Business Objects Crystal Decisions,Oracle有 Analytic WorkspaceManager ,SqlServer2005有BusinessIntelligence Development Studio,Pentaho有Schema Workbench。相对其他商业产品,Schema Workbench比较简单,也没有和软件开发平台如Eclipse集成在一起。


多维查询

有了表达逻辑关系的模型Cube,数据仓库中也导入了业务数据,我们还要告诉执行引擎如何取得我们真正所要的数据。这个查询语言就是MDX(Multidimensional Expression),它是微软在1997年首次提出,并为多家厂商采用。


数据展现

MDX查询返回的是多维数据,普通的二维表很难表现超过2个维度的数据,如果要进行数据的钻取等操作更是难上加难。各厂家的技术平台都有想应的实现技术。比较底层的界面表现技术Oracle 有Business Intelligence Beans,开源的有JPivot,这些需要开发相应的展示页面和维护界面,但可以和已有的系统紧密结合。另外为了方便用户使用和维护,也有做成可运行程序的系统平台。如Oracle有Oracle Business IntelligenceFoundation,开源的有SpagoBI,Pentaho BI Platform等。这些系统都有完整的DashBoard,多维查询,报表等功能,使用维护都比较方便,缺点就是比较庞大笨重。

以上是建立OLAP应用的几个重要环节和相关技术,最后总结一下就是:用户需求——数据建模——数据仓库。

慧都搭建数据仓库流程

用户需求决定了如何设计模型和数据仓库,数据模型又是描述数据仓库的逻辑关系,而数据模型和数据仓库的某些技术限制也可能影响用户需求的实现。这三者之间是相互依存和影响着的。而MDX查询,又是这三者之间的粘合剂,它表达了用户的需求,经过OLAP引擎的解析,根据数据模型的描述,从数据仓库找到所需要的数据。


关于慧都数仓建模大师
慧都数仓建模大师能够快速、高效地帮助客户搭建数据仓库供企业决策分析之用。满足数据需求效率、数据质量、扩展性、面向主题等特点。基于企业的业务目标,进行数据理解、数据准备、数据建模,最后进行评价和部署,真正实现数据驱动业务决策。更多详情,请

标签:大数据数据仓库数据建模

本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@pclwef.cn

文章转载自:

为你推荐

  • 推荐视频
  • 推荐活动
  • 推荐产品
  • 推荐文章
  • 慧都慧问
扫码咨询


添加微信 立即咨询

电话咨询

客服热线
023-68661681

TOP