提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
将GPU加速数学计算的强大CUDA架构的优势利用到NMath和NMath Stats中
标签:数学计算开发商: CenterSpace
当前版本: 最新版本
产品类型:控件
产品功能:算法
平台语言:
开源水平:不提供源码
本产品的分类与介绍仅供参考,具体以商家网站介绍为准,如有疑问请来电 023-68661681 咨询。
NMath Premium是在.NET平台上将GPU加速数学计算的强大CUDA架构的优势利用到NMath和NMath Stats中。CUDA是NVIDIA开发的一种并行计算平台和编程模型,它可以通过利用图形处理单元的能力大幅提高计算性能。GPU计算是所有NVIDIA 8系列和更高级别的GPU中的一个标准功能。整个NVIDIA Tesla线均支持CUDA技术。
NMath Stats 已与NMath标准版打包,最新版本请点击跳转下载
The Premium Editions of NMath and NMath Stats leverage the power of the CUDA™ architecture for GPU-accelerated mathematics on the .NET platform. CUDA is a parallel computing platform and programming model developed by NVIDIA, which enables dramatic increases in computing performance by harnessing the power of the graphics processing unit. GPU computing is a standard feature in all NVIDIA's 8-Series and later GPUs. The entire NVIDIA Tesla line supports CUDA.
* 关于本产品的分类与介绍仅供参考,精准产品资料以官网介绍为准,如需购买请先行测试。
NMath Premium works with any CUDA-enabled GPU. NMath Premium automatically detects the presence of a CUDA-enabled GPU at runtime and seamlessly redirects appropriate computations to it. The library can be configured to specify which problems should be solved by the GPU, and which by the CPU. If a GPU is not present at runtime, the computation automatically falls back to the CPU without error.
No GPU programming experience is required.
With a few minor exceptions, such as optional GPU configuration settings, the API is identical between NMath and NMath Premium. Existing NMath developers can simply upgrade to NMath Premium and immediately begin to offer their users higher performance from current graphics cards, or from additional GPUs, without writing any new software.
No changes are required to existing NMath code.
GPU acceleration provides a 2-4x speed-up for many NMath functions. With large data sets running on high-performance GPUs, the speed-up can exceed 10x. Furthermore, off-loading computation to the GPU frees up the CPU for additional processing tasks, a further performance gain.
The directly supported features for GPU acceleration of linear algebra (dense systems) are:
Singular value decomposition (SVD)
QR decomposition
Eigenvalue routines
Solve Ax = B
GPU acceleration for signal processing includes:
1D Fast Fourier Transforms (Complex data input)
2D Fast Fourier Transforms (Complex data input)
GPU: (1) NVIDIA Tesla M2090: 1 Fermi GPU, 512 CUDA cores, 6GB GDDR5 memory
CPU: Intel Xeon X5670, 2.93 GHz, 6-core with Hyper-Threading (12 threads), 12 MB L3 cache, 32 nm manufacturing process (Westmere)
Of course, many higher-level NMath and NMath Stats classes make use of these functions internally, and so also benefit from GPU acceleration indirectly.
NMath
Least squares, including weighted least squares
Filtering, such as moving window filters and Savitsky-Golay
Nonlinear programming (NLP)
Ordinary differential equations (ODE)
NMath Stats
Two-Way ANOVA, with or without repeated measures
Factor Analysis
Linear regression and logistic regression
Principal component analysis (PCA)
Partial least squares (PLS)
Nonnegative matrix factorization (NMF)
NMath Premium works with any CUDA-enabled GPU. NMath Premium automatically detects the presence of a CUDA-enabled GPU at runtime and seamlessly redirects appropriate computations to it. The library can be configured to specify which problems should be solved by the GPU, and which by the CPU. If a GPU is not present at runtime, the computation automatically falls back to the CPU without error.
No GPU programming experience is required.
With a few minor exceptions, such as optional GPU configuration settings, the API is identical between NMath and NMath Premium. Existing NMath developers can simply upgrade to NMath Premium and immediately begin to offer their users higher performance from current graphics cards, or from additional GPUs, without writing any new software.
No changes are required to existing NMath code.
GPU acceleration provides a 2-4x speed-up for many NMath functions. With large data sets running on high-performance GPUs, the speed-up can exceed 10x. Furthermore, off-loading computation to the GPU frees up the CPU for additional processing tasks, a further performance gain.
The directly supported features for GPU acceleration of linear algebra (dense systems) are:
GPU acceleration for signal processing includes:
GPU: (1) NVIDIA Tesla M2090: 1 Fermi GPU, 512 CUDA cores, 6GB GDDR5 memory
CPU: Intel Xeon X5670, 2.93 GHz, 6-core with Hyper-Threading (12 threads), 12 MB L3 cache, 32 nm manufacturing process (Westmere)
Of course, many higher-level NMath and NMath Stats classes make use of these functions internally, and so also benefit from GPU acceleration indirectly.
NMath
NMath Stats
更新时间:2023-01-03 13:41:08.000 | 录入时间:2014-02-13 15:42:22.000 | 责任编辑:胡涛
是一款科学计算软件,为网络、 图像、 几何学、 数据科学、 可视化、机器学习等领域提供了有效算法。
Wolfram|Alpha Notebook Edition它是一个将 Wolfram|Alpha 和Mathematica 精华融汇于一身的独立统一工具。
DB2 with BLU Acceleration使用动态内存中列式技术加速分析数据
NMath Stats提供统计计算和生物统计学领域的处理功能,包括描述统计、概率分布、组合功能、多重线型回归、假设检验、方差分析计算和多元统计
NMathNMath是一个.NET的数学库,包含了NET平台上的面向对象数字计算的基础类。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@pclwef.cn
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢