提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
转帖|大数据新闻|编辑:况鱼杰|2020-09-11 11:28:20.247|阅读 102 次
概述:SPC对很多制造业来讲,已经不是什么新鲜事物了。但做得好,做出效益的却不多,特别是中小企业。这里,根据实际辅导中所看到的一些问题,跟大家做一些探讨。
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
相关链接:
SPC对很多制造业来讲,已经不是什么新鲜事物了。但做得好,做出效益的却不多,特别是中小企业。这里,根据实际辅导中所看到的一些问题,跟大家做一些探讨。
不知道哪些点要用管制图进行管制,花费大量的时间与人力,在不必要的点上进行管制。熟不知,SPC只应用于重点的尺寸。那么重点尺寸\性能如何确定呢?通常应用FMEA的方法,开发重要管制点。严重度为8或以上的点,都是考虑的对象。
计量值管制图,需要用测量工具取得管制特性的数值。管制图对测量系统有很高的要求。通常,我们要求GR&R不大于10%。而在进行测量系统分析之前,要事先确认测量仪器的分辨力,要求测量仪器具有能够分辨出过程变差的十分之一到五分之一的精度,方可用于制程的解析与管制,否则,管制图不能识别过程的谈判。而很多工厂勿略了这一点,导致做出来的管制图没办法有效的应用,甚至造成误导。
管制图的应用分为两个步骤:解析与管制。在进行制程管制之前,一定要进行解析。解析是目的是确定制程是的稳定的,进而是可预测的,并且看过程能力是否符合要求。从而了解到过程是否存在特殊原因、普通原因的变差是否过大等致关重要的制程信息。制程只有在稳定,并且制程能力可以接受的情况下,方才进入管制状态。
在完成制程解析后,如果我们认为制程是稳定且制程能力可接受的,那么,就进入管制状态。制程控制时,是先将管制线画在管制图中,然后依抽样的结果在管制图上进行描点。那么,管制时管制图的管制线是怎么来的呢?管制图中的管制线是解析得来的,也就是说,过程解析成功后,管制线要延用下去,用于管制。很多工厂没能延用解析得来的管制线,管制图不能表明过程是稳定与受控的。
要知道,管制图所反应的是“过程”的变化。生产的过程输入的要项为5M1E(人、机、料、法、环、量),5M1E的任何变化都可能对生产出来的产品造成影响。换句话说,如果产品的变差过大,那是由5M1E其中的一项或多项变动所引起的。如果这些变动会引起产品平均值或产品变差较大的变化,那么,这些变化就会在XBAR图或R图上反映出来,我们也就可以从管制图上了解制程的变动。发现有变异就是改善的契机,而改善的第一步就是分析原因,那么,5M1E中的哪些方面发生了变化呢?我们可以查找管制图中记录的重大事项,就可以明了。所以,在使用控制图的时候,5M1E的任何变化,我们都要记录在管制图中相应的时段上。
当我们把XBAR-R管制图画出来之后,我们到底从图上得哪些有用的资讯呢?这要从XBAR及R图所代表的意义来进行探讨。首先,这两个图到底先看哪个图?为什么?R反应的是每个子组组内的变差,它反映了在收集数据的这个时间段,制程所发生的变差,所以他代表了组内固有的变差;XBAR图反映的是每个子组的平均值的变化趋势,所以其反映的是组间的变差。组内变差可以接受时,有明分组是合理的;组间变差没有特殊原因时,表明我们在一段时间内,对过程的管理是有效的、可接受的。所以,我们一般先看R图的趋势,再看XBAR图。
当产品设计出来之后,规格线就已经定下来了;当产品生产出来后,管制图的管制线也定出来了。规格线是由产品设计者决定的,而管制线是由过程的设计者决定的,管制线是由过程的变差决定的。管制图上点的变动只能用来判断过程是否稳定受控,与产品规格没有任何的联系,它只决定于生产过程的变差。当西格玛小时,管制线就变得比较窄,反之就变得比较宽,但如果没有特殊原因存在,管制图中的点跑出管制界线的机会只有千分之三。而有些公司在画管制图时,往往画蛇添足,在管制图上再加上上下规格线,并以此来判产品是否合格,这是很没有道理,也是完全没有必要的。
我们常常以七点连线来判定制程的异常,也常用超过三分之二的点在C区等法则来判断制程是否出现异常。如果是作业员,只在了解判定准则就好了;但作为品管工程师,如果不理解其中的原委,就没有办法对这些情况作出应变处理。那么这么判定的理由是什么呢?其实,这些判定法则都是从概率原理作出推论的。比如,我们知道,如果一个产品特性值呈正态分布,那么,点落在C区的概率约为5.5%,现在有三分之二的点出现在5.5%的概率区域里,那就与正态分布的原理不一致了,不一致也就是我们所说的异常。
大部分公司的管制图都是应客户的要求而建立,所以,最多也只是用于侦测与预防过程特殊原因变异的发生,很少有用于过程改善的。其实,当管制图的点显有特殊原因出现时,正是过程改善的契机。如果这个时候我们从异常点切入,能回溯到造成异常发生的5M1E的变化,问题的症结也就找到了。用就管制图进行改善时,往往与分组法、层别法相结合使用,会取得很好的效果。
SPC成功的必要条件,是全员培训。每一个人员,都要了解变差、普通原因、特殊原因的观念,与变关有差的人员,都要能看懂管制图,技术人员一定要了解过度调整的概念……等。如果缺乏必要的培训,管制图最终只会被认为是品管人员的事,而其实我们知道,过程的变差及产品的平均值并不由品管决定,变差与平均值更多的是由生产过程设计人员及调机的技术人员所决定的。如果不了解变差这些观念,大部分人员都会认为:产品只要合符规格就行了。显然,这并不是SPC的意图。所以,只有品管在关注管制图是远远不够的。
制造型企业在拥有了SPC业务系统后,将获得大量的数据。然而在跨工厂、跨系统的异构数据中,如何找到生产各个环节的规律和异常,如何获得优化见解,是制造型企业面临的关键挑战。
慧都产品质量分析解决方案助力您全面提升产品品质、降低生产成本,帮您做出正确决策。
如果你还有其他的想法,可以在评论区留言。
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@pclwef.cn
大数据分析的一些发展趋势将为企业的未来发展做好准备。大数据分析如今成为政府部门和私营企业以及医疗机构抗击新冠疫情的重要资源。这在很大程度上要归功于云计算软件的发展,很多企业现在可以实时跟踪和分析大量业务数据,并相应地对其业务流程进行必要的调整。
生产质量分析是从工厂订单下单-订单生产-流入市场, 针对整个生产链进行全面的质量分析。其中最重要的一环就是对于质量控制。
生产质量分析主要是为了帮助企业更快更准确的发现产品的质量问题,找到影响质量的根本原因,改善原因,提高企业产品良率。下面我们看看慧都科技的质量分析到底能帮助企业解决哪些问题?
在工业制造界,企业极不希望发生停机事故。因为,一小时的停机时间会使企业损失上百万人民币甚至更多。除了资金方面的损失之外,停机还意味着,当持续发生设备故障时,对员工的激励难度则会变大。因此,在企业的日常业务运营中,预测性维护就显得十分重要。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@pclwef.cn
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢